TECHNISCHE
UNIVERSITAT
DRESDEN

Center for Information Services and High Performance Computing (ZIH)

MPI Correctness Checking with MUST

Parallel Programming Course, Dresden, 8.- 12. February 2016

Mathias Korepkat (mathias.korepkat@tu-dresden.de
Matthias Lieber (matthias.lieber@tu-dresden.de) ®
Tobias Hilbrich (tobias.hilbrich@tu-dresden.de) l I

Center for Ir}f&@‘\ation Services &

Joachim Protze (protze@rz.rwth-aachen.de) High Performance Computing

Motivation

MPI| programming Is error prone

Portability errors |
(jJust on some systems, just for some runs)

Behaviour of an application run:

Crash Obviousness
Application hanging 5

Finishes

Questions:
Why crash/hang?
s my result correct?

Will my code also give correct results on another
system? ey

TECHNISCHE H
UNIVERSITAT Z I
DRESDEN 2 r for Information Se ervices s &

thPrfrmn Crnp ng

Motivation (2)
C code:

Fortran type in C |

MP1_Type contiguous (2, MPI_INTEGER,
&newtype);
MP1_Send (buf, count, newtype, target,

tag, MPI_COMM_WO?E?EF\\\\\
Use of uncommited type }

\

Tools:
Runtime correctness tools can detect such errors
Strength of such tools:

Test for conformance to 600+ page MPI standards
Understand complex calls, e.g., MPI_Alltoallw with:

9 Arguments, Including 5 comm sized arra&_

TECHNISCHE H
UNIVERSITAT Z I
DRESDEN 3 r for Infar S ervices &

Hgt erformance C puting

MUST - Overview

MPI runtime error M T
detection tool US
Open source (BSD license)
https://doc.itc.rwth-aachen.de/display/CCP/Project+ MUST

Wide range of checks, strength areas:

Overlaps in communication buffers
Errors with derived datatypes

Deadlocks

Largely distributed, can scale with the application
—

UNIVERSITAT L | H -

DRESDEN 4 thPrf rrmanc puting

MUST - Correctness Reports

C code:

MP1_Type contiguous (2, MPI1_INTEGER,

&newtype);
MP1_Send (buf, count, newtype, target,

tag, MPI_COMM_WOFB/\
_ Use of uncommitted type }

Tool Output: L

MUST Outputf*

vvho?]{ What?]14;”2014, Where?]—{ Details]

Rk e et U

Representative |[References of a

Argument 3 (datatype) is not commited for transfer, location: [representative process:
call MPI_Type_commit before using the type for MPI Selid P p .
: i
transfer! (1st freference 1 rank O:

0 |Error] (Information on datatypeDatatype created at reference
1 is for Fortran, based on the following type(s): { gucgdnfigc;) zl::gzgce ;200;1 éﬁaguuc((;us-
MPI_INTEGER }Typemap = { MPI_INTEGER, 0), #0 ' =
Ll DR in@test.c:17#0 main@test.c:14

MUST - Basic Usage

Apply MUST with an mpirun wrapper, that's it:

% mpicc source.c —0 exe % mpicc —g source.c —0 exe
% mpirun —np 4 ./exe % mustrun —np 4 ./exe

After run: inspect “MUST_Output.html”
“mustrun” (default config.) uses an extra process:
l.e.: “mustrun —-np 4 ..." will use 5 processes

Allocate the extra resource In batch jobs!

Default configuration tolerates application
crash; BUT is very slow (detalls later) F

TECHNISCHE
UNIVERSITAT Z | H
DRESDEN Genterfor Information Services &

6

MUST - With your Code

Chances are good that you will get:

e
MUST Output, starting date: Tue Feb 3 08:20:33 2015.

MUST detected no MPI usage errors nor cious behavior during this application run.

MUST has completed successfully, end date: Tue Feb 3 08:20:38 2015.

Congratulations you appear to use MPI correctly!
Consider:

Different process counts or inputs can still yield errors

Errors may only be visible on some machines

Integrate MUST into your regular testing -
DY ZIH

D R ES D E N 7 Center for Information Services &

High Performance Computing

Errors with MPI Datatypes - Overview

Derived datatypes use constructors, example:

KIVIPI_Type_vector (\

\\ NumRows /*count*/,

N 1 /*blocklength*/,
&I NumColumns /*stride*/,

2D Field MPI_INT /*oldtype*/,

(of integers) \&newType); /

Errors that involve datatypes can be complex:
Need to be detected correctly
Need to be visualized

S
TECHNISCHE Z | H
UNIVERSITAT
Center for Infermation Serv
High Performance Compu

DRESDEN 8

ices &

Errors with MPI| Datatypes - Example

C code:

MPI _Isend(bufc L f*ccunt*/ vectertype target,

MP1 Wait (&request &staty

~

NVlemory:

Y MUST detects the
error and pinpoints
MPI Isend reads, the user to the exact

MPI_Recv writes at problem

\the same time 5D Field K _ /

"Error: buffer overlap

UNIVERSITAT
DRESDEN

(of integers)
TECHNISCHE

MUST Usage Example

Example “mpi_overlap_deadlock_errors.c”

(1) MPI_Init (&argc,&argv);

(2) comm = MPI_COMM_WORLD;

(3) MPI_Comm_rank (comm, &rank);

(4) MPI_Comm_size (comm, &size);

(5)

(6) //1) Create some datatypes

(7) MPI_Type contiguous (5, MPIL_INT, &rowType);

(8) MPI_Type _commit (&rowType);

(9) MPI_Type_vector (5 /*count*/, 1 /*blocklength*/, 5 /*stride*/, MPI_INT,
&colType);

(10) MPI_Type commit (&colType);

(11)

(12) //12) Use MPI_ISend and MPI_Recv to perform a ring communication

(13) MPI_Isend (&arr[0], 1, colType, (rank+1)%size, 456, comm, &request);

(14) MPI_Recv (&arr[10], 1, rowType, (rank-1+size) % size, 456, comm,

&status);

(15)

(16) //3) Use MPI_Send and MPI_Recv to acknowledge recv

(17) MPI_Send (arr, 0, MPI_INT, (rank-1+size) % size, 345, comm);

(18) MPI_Recv (arr, 0, MPI_INT, (rank+1)%size, 345, comm, &status)

(19)

(20) MPI_Finalize ();
TECHNISCHE H

UNIVERSITAT Z I

DRESDEN 10 Center for In vices &

HJPT C}IJ

MUST Usage Example - Apply the Tool

Runs without any apparent issue with OpenMPI

Are there any errors?

Verity with MUST:

% mpicc —g mpi_overlap _deadlock errors.c \
—0 mMpl_errors

% mustrun —np 2 mpi_errors

% Firefox MUST Output.html

TECHNISCHE Z | H
UNIVERSITAT
Center for Information Services &
High Performance Computing

DRESDEN i

MUST Usage Example - Error 1 Buffer Overlap

(s

First error: Overlap in Isend + Recv

" Who?

L_\VVhat?
Message

|Error

The memory regions to be transfered by this receive operation overlap with regions
spanned by a pending non-blocking operation!

(Information on the request associated with the other communication:
Request activated at reference 1)

(Information on the datatype associated with the other communication:
Datatype created at reference 2 is for C, commited at reference 3, based on the
following type(s): { MPI_INT } Typemap = {(MPI_INT, 0), (MPI_INT, 20),
(MPI_INT, 40), (MPI_INT, 60), (MPI_INT, 80)})

The other communication overlaps with this communication at position:(vector)[2]

[OI(MPLINT)

(Information on the datatype associated with this communication:
Datatype created at reference 4 is for C, commited at reference 5, based on the
following type(s): { MPI_INT }Typemap = {(MPI_INT, 0), (MPI_INT, 4),
(MPI_INT, 8), (MPL_INT, 12), (MPI_INT, 16)})

This communication overlaps with the other communication at position:(contiguous)
[OJ(MPL_INT)

A graphical representation of this situation is available in a detailed overlap view
(MUST Output-filessMUST Overlap 0 0.html).

Where? Detalls
eferences /V

eferences of a representative process:

ference 1 rank 0: MPI_Isend (1st
urrence) called from:

main@mpi_overlap_deadlock_errors.c:22}

reference 2 rank 0: MPI_Type_vector
(1st occurrence) called from:

#0
main@mpi_overlap_deadlock_errors.c:17]

Representative location: ference 3 rank 0: MPI_Type_commit
MPI_Recy (1st occurrence) called from: [(2nd occurrence) called from:
#0

main@mpi_overlap_deadlock_errors.c:23imain@mpi_overlap_deadlock_errors.c:19

ference 4 rank 0:
1_Type_contiguous (1st occurrence)
ed from:

main@mpi_overlap_deadlock_errors.c:16}

1st occurrence) called from:

I:]fcrence 5 rank 0: MPI_Type_commit
(

main@mpi_overlap_deadlock_errors.c:1 BI

TECHNISCHE H
UNIVERSITAT Z I
DRESD EN Center for Infarmation Services &

12

High Performance Computing

MUST Usage Example - Error 1 Buffer Overlap

First error: Overlap Iin Isend + Recv

The memory regions to be transfered by this receive operation overlap with regions spanned

by a pending non-blocking operation! leferences
Th ese refe r tO leferences of a representative process:

the (Information on the request associated with the other communication: sference 1 rank 0: MPI_Isend (1st
1 " Request activated ccurrence) called from:
References apuesE ackt) D)

. pthe datatype associated Wil e=ataal cOmMmunication:
_(Details) column /ereareseference 2 or C, commitedQLrcference 3)

type(s): { MPI INT} Typemap = ((MPI_INT. 0), (MPI

1ain@mpi_overlap_deadlock_errors.c:22,

ased on the following
(MPI_INT, 40), (MPI_INT, >ference 2 rank 0: MPI_Type_vector

60), (MPL_INT, 80)}) :)sl occurrence) called from:
Data The other communication overlaps with this communication at position:(VECTOR)[2][0] jain@mpi_overlap_deadlock_errors.c:17
follow (MPI_INT)
i >ference 3 rank 0: MPI_Type_commit
0 |Error The othe _ _ _) o 2nd occurrence) called from:
(Information on the datatype associated with communication: 0

Datatype created or C, commited . ed on the following 2in@mpi_overlap_deadlock_errors.c:19

Dataty type(s): { MPI_INT ; T¥perrap— {(MPI_INT, 0), (MPL_T¥==CVIPI_INT, 8), (MPI_INT, .ference 4 rank 0
follo 12), (MPI_INT, 16)}) API_Type_contiguous (1st occurrence)

itk coma This communication overlaps with the other communication at position:(CONTIGUOUS) glled from:
[0J(MPI_INT) 1ain@mpi_overlap_deadlock_errors.c:16}
A graphi

: - _ e . ;) . sference S rank 0: MPI_Type_commit
A graphical representation of this situation 1s available 1n a detailed overlap view Ist ocoumence) called from:

(MUST Overlap.html) 0
Imajn@ mpi_overlap_deadlock_errors.c: 18|

6 It ZIH

D R ES D E N] 3 Center for Information Services &

High Performance Computing

MUST - Example (4)

Visualization of overlap (MUST_Overlap.html):

The application issued a set of MPI calls that overlap in communication buffers! The graph below shows details on this situation. The first colliding item of each involved
communication request is highlighted.
MPI_Isend:send(buf= 0x7fff337f9fe4)
MPI_Type_vector(count=5) MPI_Recv:recv(buf= +0x28)
ki /
e '—) (blocklength=1) | MPI_Type_contiguous(count=5)
[0] [0]
MPI_INT
TECHNISCHE Z | H
UNIVERSITAT =
DRESDEN 10 i Pt Bomaing

MUST Usage Example - Warning 1 “Count 0”

Warning for unusual values, that match MPI
specification:

Representative location:
0-1 Warning Argument 2 (count) is zero, which is correct but unusual! MPI_Send (1st occurrence) called from:
#0 main@mpi_overlap_deadlock_errors.c:26

—

e
TECHNISCHE , H
UNIVERSITAT I
D R ES D E N Center for Information Services &

1 5 High Performance Computing

MUST Usage Example - Error 2 Deadlock

Second Error: potential Deadlock

|Error]

Message

The application issued a set of MPI calls that can cause a deadlock!
A graphical representation of this situation is available in a detailed
deadlock view (MUST Output-filess MUST Deadlock.html).
References 1-2 list the involved calls (limited to the first 5 calls,
further calls may be involved). The application still runs, if the
deadlock manifested (e.g. caused a hang on this MPI
implementation) you can attach to the involved ranks with a
debugger or abort the application (if necessary).

References
eferences of a representative process:

in@mpi_overlap_deadlock_errors.c:26|

ference 2 rank 1: MPI_Send (1st
urrence) called from:

in@mpi_overlap_deadlock_errors.c:26|

TECHNISCHE
@ UNIVERSITAT
DRESDEN

ZIH

Center for Information Services &
16 High Performance Computing

MUST Usage Example - Error 2 Deadlock (2)

Visualization of deadlock (MUST Deadlock.html)

The application issued a set of MPI calls that can cause a deadlock! The graphs below show details on this situation. This includes a wait-for graph that shows active wait-for
dependencies between the processes that cause the deadlock. Note that this process set only includes processes that cause the deadlock and no further processes. A legend details the
wait-for graph components in addition , while a parallel call stack view summarizes the locations of the MPI calls that cause the deadlock . Below these graphs, a message queue
graph shows active and unmatched point-to-point communications. This graph only includes operations that could have been intended to match a point-to-point operation that is
relevant to the deadlock situation. Finally, a parallel call stack shows the locations of any operation in the parallel call stack. The leafs of this call stack graph show the components of
the message queue graph that they span. The application still runs, if the deadlock manifested (e.g. caused a hang on this MPI implementation) you can attach to the involved ranks

with a dcbuiier or abort the aiilicatjon (if neccsa).
I_COMM_WORLD|
b Legend

0: MP1_Send Active MPI Call

comm=A, tag=345comm=A, tag=345

1. MPI_Send Sub Operation

Call Stack
A A waits for B and C._ B
main@mpi_overlap_deadlock_errors.c:26 "
Ranks: 0-1
A waits for B or C
MPI_Send A [: ———————— » B

MUST Usage Example - Error 3 Type Leak

Third error: Leaked resource (derived datatype)

0-1

|Error

There are 2 datatypes that are not freed when MPI_Finalize was issued, a quality
application should free all MPI resources before calling MPI_Finalize. Listing
information for these datatypes:

-Datatype 1: Datatype created at reference 1 is for C, commited at reference 2, based
on the following type(s): { MPI_INT}Typemap = {(MPI_INT, 0), (MPI_INT, 4),
(MPI_INT, 8), (MPI_INT, 12), (MPI_INT, 16)}

-Datatype 2: Datatype created at reference 3 is for C, commited at reference 4, based
on the following type(s): { MPI_INT}Typemap = {(MPI_INT, 0), (MPI_INT, 20),
(MPI_INT, 40), (MPI_INT, 60), (MPI_INT, 80)}

Representative location:
MPI_Type_contiguous (1st occurrence)
called from:

#0

main@ mpi_overlap_deadlock_errors .c:lﬁE:ercncc 3 rank 0: MPI_Type_vector

eferences
eferences of a representative process:

ference 1 rank 0:
1_Type_contiguous (1st occurrence)
ed from:
main@mpi_overlap_deadlock_errors.c:16

ference 2 rank 0: MPI_Type_commit
E}st occurrence) called from:

main@mpi_overlap_deadlock_errors.c:18|

1st occurrence) called from:

main@ mpi_overlap_deadlock_errors.c:17

ference 4 rank 0: MPI_Type_commit
2nd occurrence) called from:

in@mpi_overlap_deadlock_errors.c:19

TECHNISCHE
UNIVERSITAT

ZIH

DRESDEN

18

Center for Information Services &
High Performance Computing

MUST Usage Example - Error 4 Missing Completion

Fourth error: Leaked resource (request)

Leaked requests often indicate missing
synchronization by MPI_Wait/Test

[Rank(s]Type] Message From [References

References of a representative process:

There are 1 requests that are not freed when MPI_Finalize was issued, a quality
application should free all MPI resources before calling MPI_Finalize. Listing
0-1 [Error information for these requests:

Representative location:
IMPI_Isend (1st occurrence) called from:
#0
main@mpi_overlap_deadlock_errors.c:22}

ference 1 rank 0: MPI_Isend (1st
%@umnce) called from:

-Request 1: Request activated at reference 1 main@mpi_overlap_deadlock_errors.c:22}

TECHNISCHE | H
UNIVERSITAT Z I
DRESD EN 19 Center for Infarmation Services &

High Performance Computing

MUST Usage Example - Summary

Example “mpi_overlap_deadlock_errors.c” :

(1) MPL_Init (&argc,&argv): (Buffer overlap, first
(2) comm = MPI_COMM_WORLD; MPI INT of the

(3) MPI_Comm_rank (comm, &rank); [MPI_Recv overlaps with
(4) MPI_Comm_size (comm, &size); first MPI_INT in third
(5) block of MPI_Isend

(6) //1) Create some datatypes

e AL T ntiguous (5, MPI_INT,

 aicmitel desilionk mmit (&rowType); _
MPI_Send may block ftor (5 /*count*/, 1 ength*/, 5 /*stride*/, MPI INT,

(depends on MPI ~ &colType) [

User forgets to call an
MPI_Wait for the MPI request

~ MPI_Recv to perform a ring comm
MPI_Isend (&arr[0], 1, colType, (rank+1)%size, 456, comm, &request);
MPI_Recv (&arr[10], 1, rowType, (rank-1+size) % size, 456, comm,

&status); : —
(15)) Send/recv count are 0, is this intended?
(16) N3) Use MPI_Send and ME=
(17) MPI_Send (arr, 0, MPT_INT, (rank-1+size) % size, 345, comm);

(18) MPI_Recv (arr, 0, MPI_INT, (rank+1)%size, 345, comm, &status);

implementation and
buffer size)

19 S
§20) MPI_Finalize (); User forgot to free MPI Datatypes] &

TECHNISCHE before calling MPI_Finalize
UNIVERSITAT
DRESDEN

Scalability - Operation Modes

MUST causes overhead at runtime

MUST expects application crash at any time
MUST's communication must tolerate crashes

Basic operation modes (centralized):

Centralized, application known to crash Centralized, application does not crash

+

+ All checks enabled
+ All checks enabled

+ Requires only one extra process .
+ Requires only one extra process

- Very slow => use for small test cases

at < 32 processes - Application must not crash or hang

- Use for < 100 processes

L) IREREFT ZIH

Center for Information Services &
DRESDEN 21 " High Performancs Computing

Scalability - Distributed Correctness Checking

Distributed non-Local
Correctness Checking

Application
I
MUST

>[Application

I
<« MUST | L 5 Correctness
Report
>[Application

4—[MUST

>[Application
I

4—[MUST

TECHNISCHE H
UNIVERSITAT Z I
DRESD EN 29 Center for Information Services &

High Performance Computing

Scalability - Advanced Operation Modes

Distributed, no crash *Centralized, crash Distributed, crash

e Uses tree network: e Three layer network:
Layer O: X ranks Layer 0: X e Uses tree network:
Layer 1: ceil(X/Z) ranks Layer 1: ceil(X/(Y-1)) Layer 0: X

Layer 2: 1 Layer 1: A=ceil(X/(Y-1))

Layer k: 1 rank Layer 2: B=ceil(A/Z)

+ < 100 processes

+ All checks Layer k: 1
+ ~ 10.000 process scale

~ 10.000 process scale

II)

e Use “--must:nodl” to
Teelle deselloek - Currently not on all

detection towards systems
reduced overhead

F

60 st ZIH

D R ES D E N 23 Center for Information Services &

High Performance Computing

Scalability - “--must:info”

Use “—must:info” to learn about a configuration:

% mustrun --must:info \
——-must:fanin 16 \
—-must:nodesize 12 \ Configuration type]
-np 1024
[MUST] MUST configuration ... distributed checks
with application crash handling
[MUST] Required total number of processes ... 1125
[MUST] Number of application processes ... 1024
[MUST] Number of tool processes ... 101
[MUST] Total number of required nodes ...
[MUST] Tool layers S|zes ... 1024:94: ?//;7/

_—

Number of Total number
[Tree layout j [compute nodes] [processes used]

UNIVERSITAT ZIH

DRESDEN

